Introduction to the Web Semantic Architecture

SGML Origins

- **GINTERSTAND** SGML: Standard Generalized Markup Language
- It comes from GML, an IBM language 1960
- SGML is an ISO standard
- SGML was originally designed to enable the sharing of <u>machine-readable</u> documents in large projects in government, legal and industry (EDI).
- It has also been used in printing and publishing, but his complexity has prevented its widespread expansion.

Several other MarkUp langages derives from SGML

Differences between HTML, DocBook, XML

HTML (Hyper Text Mark-up Language): a language only designed to publish on Web.

DocBook : a language designed to describe a Book. It enables publication on Print, Web, PDF, etc...

XML (eXtensible Mark-up Language) : a meta language designed to express any vocabularys needed in application. XML is easier to implement than SGML, so it has replaced SGML almost completely. XML is used for general-purpose applications, such as the <u>Semantic Web</u>, <u>XHTML</u>, <u>SVG</u>, <u>RSS</u>, <u>Atom</u>, <u>XML-RPC</u> and <u>SOAP</u>.

XML definition and use

Definition Scheme of the XML

<schema "http://.../XMLSchema" version="1.0"> <simpleType name="dayOfMonth"> <restriction base="integer"> <mastriction base="integer"> <minInclusive value="1"/> <mastrictusive value="31"/> </restriction> </simpleType> Valid XML data according to the Schema <dayOfMonth> 12 </dayOfMonth>

Invalid XML data according to the Schema <dayOfMonth> 33 </dayOfMonth>

We want to define a type of data for the day of the month

Web Semantic Architechure the basis Layer, XML

- XML permits abstracts expressions, sharable between different computers in different locations.
- Technically, this features are permitted by three ways
 - NS : Name Space and schemas which permit to define a set of vocabulary
 - Unicode, which permit a comprehension of encoding on every computers.
 - URI : Universal Resource Identifier, which permit to identify a resource on the Net

XML + Name Space + xmlschema		
Unicode	U.R.I.	

Web Semantic Architechure the rdf layer, XML We want to say to the system father(P,Y) which means father of « P » is « Y »

RDF (Resource DescriptionFramework) is a way to express a <u>statement</u> between a <u>ressource</u> and a <u>property</u>:

<rdf:RDF xmIns:rdf=« … » xmIns:myfamily=« … »> <rdf:Description rdf:about="http://www.family.picot/arthur"> <family:father> Olivier Picot </family:father> </rdf:Description> </rdf:RDF>

Web Semantic Architechure the rdf layer

In the previous exemple, we explain that the father of Arthur is Olivier. W've done this through an RDF syntax, so a computer can understand and treat this information.

- RDF enables us to explain statements to the system.
- This a new level of Web Semantic

Web Semantic Architechure the rdf schema layer, XML

Ressource: Statement Parent(P,X) With RDFS, we can assert relationships between statements like "is subclass of". In our example, we assert that the Statement "Father " is a subclass of statement "parent"

SubClass

<rdfs:Class rdf:about="#father"> <rdfs:subClassOf rdf:resource="#parent"/> </rdfs:Class>

Property: Statement Father(P,X) Then the system knows that

if "Olivier" is the father of "Arthur" then

"Olivier" is a parent of "Arthur"

Web Semantic Architechure the rdfs layer

RDFS allows us to organize our statements and a lot of others relationships, that are not shown here

RDF	RDFS	
XML + Name Space + xmlschema		
Unicode	U.R.I.	

- RDFS enables us to explain relationships between statements.
- Then the system knows some new assertions(i.e. Olivier is the parent of Athur)

Web Semantic Architechure the ontology layer

It's impossible to assert, in rdfs some kind of relationship between two Statements. To do this we have to use ontology langage: OWL

<owl:ObjectProperty rdf:ID="Parent"> <rdfs:range rdf:resource="#human"/> <rdfs:domain rdf:resource= "#family"/> <owl:inverseOf rdf:resource="#Child"/> </owl:ObjectProperty>

With this new relationship between Statements, the system can deduce that, if Arthur Parent is Olivier Then Olivier Child is Arthur « Well done !!! ;-) »

Ressource: Statement Parent(P,X)

InverseOf

Property: Statement Child(P,X)

Web Semantic Architechure the ontology layer (owl)

OWL allows us to assert some more complicated relationship than rdfs can do.

Ontology vocabulary		
RDF	RDFS	
XML + Name Space + xmlschema		
Unicode	U.R.I.	

- OWL allow us to declare some refined relationship between statement and propertys, like:
- Inverse
- Equivalent
- Restrictions
-

Web Semantic Architechure the logic and inference rules layer

We dispose of those statements

S1: male(x) \Leftrightarrow x is a male

S2: father(P,x) ⇔ x is the father of P

S3: parent(P,x) ⇔ x is the parent of P

S4: notSame(X,Y) \Leftrightarrow x is not the same than Y

S5: brotherOrSister(X,Y) \Leftrightarrow x is the brother or the sister of y

We can now assert some rules to the system

R1: male(X), parent(P,X) \rightarrow father(P,X) R2: father(P,X), parent(P,Y), notSame(X,Y) \rightarrow mother(P,Y) R3: parent(P,X), brotherOrSister(P,Q) \rightarrow parent(Q,X)

R4: brotherOrSister(P,Q) \rightarrow brotherOrSister(Q,P)

Web Semantic Architechure the logic and inference rules layer

Rules reminder:

R1: male(X), parent(P,X) \rightarrow father(P,X) R2: father(P,X),parent(P,Y),notSame(X,Y) \rightarrow mother(P,Y) R3: parent(P,X),brotherOrSister(P,Q) \rightarrow parent(Q,X) R4: brotherOrSister(P,Q) \rightarrow brotherOrSister(Q,P)

 If we assert to the system: Parent(Arthur,Olivier) Male(Olivier) BrotherOrSister(Arthur, Leonard) Parent(Leonard,Celine) Using rules, the system can deduce that

R1: male(Olivier), parent(Arthur,Olivier) \rightarrow Father(Arthur,Olivier) R4: brotherOrSister(Arthur,Leonard) \rightarrow brotherOrSister(Leonard, Arthur) R3:Parent(Leonard,Celine),

brotherOrSister(Leonard, Arthur) → Parent(Arthur,Celine) R2:father(Arthur,Olivier),parent(Arthur,Celine), notSame(Celine,Olivier)→ Mother(Arthur,Celine)

Web Semantic Architechure Conclusion

We've quickly seen the tools corresponding to the different nivels of the semantic web architecture.

- If we organize safetly our indexes, or any kind of meta data, we can afterwards engage a process of asserting statements and rules, then starting a step of inducing and deducing new assertions
- In a context of web analysis, we prepare our data to future use.
- As you've seen, AXIS is a way to do so

Thank You for you attention

Web Semantic Architechure the logic and inference layer

Asserting some rules to the system, we can induce some informations afterward.

This is the upper nivel of our architecture

SKEMA / TITAN

Web Semantic Architechure Reference site

You see in English and in French a more detailed presentation of semantic web at:

http://
Please feel free to send us comments on this brand an new translation done by Titan